
http://www.gulfhypoxia.net

Eutrophication

In the Marine Environment

Noxious and Harmful Algal Blooms

Hypoxia

Nancy N. Rabalais
Louisiana State University

&

Louisiana Universities Marine Consortium

nrabalais@lumcon.edu



NHxNOy
N2

N Fixation, human N DepositionN Fixation, natural N Transfer

Global N Budget: ~1860

(Tg N/yr)

Galloway and Cowling 2002



Global N Budget: Present

(Tg N/yr)

NOy
N2 NH3

N Fixation, natural N Fixation, human N Transfer N Deposition

Galloway and Cowling 2002



Terrestrial Phosphorus Fluxes (Tg/yr)
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Nutrients, Increased Growth, Low Oxygen

Time Magazine
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n now > 550 Data from Water Resources Inst.





Chesapeake Bay, Maryland/Virginia:

1989 severe oxygen depletion.

Bay is about 180 km long.

Maximum depth is about 40 m.

Red = <1 mg/l  Yellow = <2mg/l



Oxygen content 2 m above the bottom during August-September in the 

northern Adriatic Sea from 1911 to 1984 for the periods indicated. 

Redrawn from Justić (1991) with permission.
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Baltic Sea and Coastal Waters



(modified by N. Rabalais; Galloway and Cowling 2002; Boesch 2002)
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14,000 km2

Annual Hypoxia

Li and Daler 2004

East China Sea 



“Our rivers are 

too large to 

have nutrient 

problems and 

dead zones” 

Land-Ocean 

Interactions in the 

Coastal Zone 

(LOICZ/IGBP) Open 

Science Meeting, 

Bahia Blanca, 

Argentina, November 

1999
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Goolsby et al. 1999, Rabalais 2002



Effects are more far reaching

than suspended sediment plume, 

esp. N & somewhat P

New Orleans

dominant wind direction

Mississippi River

Atchafalaya River

Hypoxic Area *

Mississippi River –
Gulf of Mexico Ecosystem Continuum

Source: N. Rabalais



•Mid-summer shelfwide cruise

•Monthly lines C and F

•Deployed oxygen meters

28N 28N
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Extensive Field Measurements
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Harmful and Noxious Algal Blooms

Heterosigma akashiwoNorthern Gulf of Mexico May 2011



Nutrients, Increased Growth, Low Oxygen

*

50% C

(Turner et al. 2005)
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Dissolved Oxygen  DO

Conductivity  C

Temperature  T

Turbidity  TB

In vivo Fluorescence  F

Currents  ADCP

Nutrient Experiments 

(selected)

Light Meter Deployments

(selected)

Station C6C/BIO2 C/T/DO/TB/F         2.4 m

C/T/DO/TB/F    10.7 m

C/T/DO/TB/F   19 m 

C/T                       6.6 m

C/T                   14 m

ADCP

Station CSI-6, LSU/WAVCIS Full meteorological suite 

& wave meters

Source: N. Rabalais



Apr

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

May

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Jul

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Oct

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day

Sep

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Aug

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Nov

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Day

Jun

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

cold front

tropical storm

deep water intrusion

cold fronts

respiration respiration

respiration

resp

D
is

s
o

lv
e

d
 O

x
y
g

e
n

 (
m

g
 l

-1
)

cold front

Rabalais et al. 2007



More Nutrients >>> 

More Phytoplankton >>> 

More Carbon Reaches the Bottom >>>

More Oxygen Consumed >>>

More Hypoxia

Verified by Paleoindicators

Photo: N. Rabalais, LUMCON



Nitrogen Inputs to the Mississippi Watershed

Goolsby et al. 1999



Point Source

10%

Nonpoint 

Source

90%

Other

Commercial and

Public Enterprises

11%

Municipal

Wastewater

Treatment Plants

65%

Variety of

Industrial 

Sources

25%

http://water.usgs.gov/nawqa/sparrow/gulf_findings/Alexander et al. 2008    &



Nutrient Yields from the Mississippi Basin

We know where it comes from, what it does, and what we should do.

Unfortunately, this is not the EU.

Multi-jurisdictional authorities and engrained social structure create a quagmire 

that does not overcome the inertia for nutrient mitigation and control.



Predicting Hypoxia in summer

(nitrate flux in May, year)

Similar analyses with PO4, TP, TN, Si, various Si:N:P ratios indicate that N, in 

the form of NO3+NO2, is the major driving factor influencing the size of hypoxia 

on the Louisiana shelf.



Turner et al., unpubl. data





Relationship Between 
Biogenic Silica and Nutrient 

Loading

% BSi
N Loading

Turner and Rabalais 1994
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A shift from heavily silicified to less silicified, including the HAB 

Pseudo-nitschia

(indicates potential Si limitation but competitive advantage of 

Pseudo-nitzschia with increased nitrogen)

Parsons et al. 2003 
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Quinqueloculina

Not an abundant species 

but a definite decline

1945 in 60 m

1950 in 35 m

1900 in 27 m

An increase of hypoxia in 

time with depth? 

Platon et al. 2005



Brown Shrimp
• Fisheries resources at risk

• Altered migration

• Reduced habitat

• Changes in food resources

• Susceptibility of early life stages

• Growth & reproduction

The Consequences



Data source: Nancy N. Rabalais, LUMCON, and R. Eugene Turner, LSU
Funding sources: NOAA Center for Sponsored Coastal Ocean Research and U.S. 
EPA Gulf of Mexico Program
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Reduce Nutrients, Reduce Hypoxia

Zaitsev 1992

N and P Loads  

Correspond 

to Fertilizer Use

Mee 2006

Northwestern Shelf 

Black Sea

Hypoxic Area Up to 40,000 km2

Currently, non-existent or minimal



The Future

Climate Change 

Biofuels

Increased Population

Increased Agribusiness

Increased Atmospheric 

Deposition



Anthropogenic 
activities

Vertical carbon flux

Nutrient-enhanced
productivity

Physical environment
(Stratification +)

(Oxygen saturation -)
(Current shifts)

(Tropical storms)

Nutrient loads 
(+) (-)

Hydrologic
cycle (+) (-)

Water 
temperature

(mostly +)

Bottom-water hypoxia
pCO2 (+)

pH (-)
H2S (+)

efflux of NH4
+, PO4

-3, silicate (+)

Climate variability
climate change

Sedimentary carbon
and nutrient pools

Sea level
rise (+)

Harmful & 

noxious

algal blooms

WindsReactive N
(mostly +)

Biological responses
(Metabolic rates 

mostly +)
(Primary production +)

(Respiration +)

Rabalais et al., 2014


