Eutrophication In the Marine Environment **Noxious and Harmful Algal Blooms** Hypoxia Nancy N. Rabalais Louisiana State University 8 Louisiana Universities Marine Consortium nrabalais@lumcon.edu Mexico Mexico http://www.gulfhypoxia.net

Global N Budget: ~1860 (Tg N/yr)

N Fixation, natural

N Fixation, human

Galloway and Cowling 2002

N Deposition

N Transfer

Global N Budget: Present (Tg N/yr)

N Fixation, human

N Fixation, natural

Sfer **N Deposition** Galloway and Cowling 2002

N Transfer

Terrestrial Phosphorus Fluxes (Tg/yr)

No trawlable fish, shrimp, crabs Hypoxia = Dissolved $O_2 < 2 \text{ mg/L}$ (=2 ppm)

Data from Water Resources Inst.

1019 5

n now > 550

U.S. Hypoxic Trends for Estuarine and Coastal Systems

Oxygen content 2 m above the bottom during August-September in the northern Adriatic Sea from 1911 to 1984 for the periods indicated. Redrawn from Justić (1991) with permission.

Baltic Sea and Coastal Waters

They are increasing

(modified by N. Rabalais; Galloway and Cowling 2002; Boesch 2002)

Figure 5. Historical variations of nitrate concentrations at Datong station (33).

"Our rivers are too large to have nutrient problems and dead zones"

Land-Ocean Interactions in the Coastal Zone (LOICZ/IGBP) Open Science Meeting, Bahia Blanca, Argentina, November 1999

Mississippi River -Gulf of Mexico Ecosystem Continuum

Effects are more far reaching than suspended sediment plume, esp. N & somewhat P Source: N. Rabalais

dominant wind direction

Mid-summer shelfwide cruise
Monthly lines C and F
Deployed oxygen meters

Extensive Field Measurements

Stratification

(mid-summer)

Harmful and Noxious Algal Blooms

Northern Gulf of Mexico May 2011

Heterosigma akashiwo

Nutrients, Increased Growth, Low Oxygen

Mississippi River Discharge at Tarbert Landing, 1935 – 2015

Source: N. Rabalais

More Nutrients >>> More Phytoplankton >>> More Carbon Reaches the Bottom >>> More Oxygen Consumed >>> More Hypoxia Verified by Paleoindicators

Nitrogen Inputs to the Mississippi Watershed

Alexander et al. 2008

http://water.usgs.gov/nawqa/sparrow/gulf_findings/

Nutrient Yields from the Mississippi Basin

We know where it comes from, what it does, and what we should do. Unfortunately, this is not the EU.

Multi-jurisdictional authorities and engrained social structure create a quagmire that does not overcome the inertia for nutrient mitigation and control.

Similar analyses with PO_4 , TP, TN, Si, various Si:N:P ratios indicate that N, in the form of NO_3+NO_2 , is the major driving factor influencing the size of hypoxia on the Louisiana shelf.

Relationship Between Biogenic Silica and Nutrient Loading

Turner and Rabalais 1994

A shift from heavily silicified to less silicified, including the HAB Pseudo-nitschia

(indicates potential Si limitation but competitive advantage of *Pseudo-nitzschia* with increased nitrogen)

Quinqueloculina

Not an abundant species but a definite decline

1945 in 60 m 1950 in 35 m 1900 in 27 m

An increase of hypoxia in time with depth?

Platon et al. 2005

The Consequences

- . Fisheries resources at risk
- . Altered migration
- . Reduced habitat
- . Changes in food resources
- . Susceptibility of early life stages
- . Growth & reproduction

Size of bottom-water hypoxia in mid-summer

Data source: Nancy N. Rabalais, LUMCON, and R. Eugene Turner, LSU Funding sources: NOAA Center for Sponsored Coastal Ocean Research and U.S. EPA Gulf of Mexico Program

Reduce Nutrients, Reduce Hypoxia

The Future

Climate Change Biofuels Increased Population Increased Agribusiness Increased Atmospheric Deposition

