

Coupled Biogeochemical Cycling of Macro-elements

K. Ramesh Reddy
Wetland Biogeochemistry Laboratory
Soil and Water Sciences Department
University of Florida-IFAS

6	7	8
C	N	0
12	14	16
	15	16
	Р	S
	31	32

Outline

- Introduction
- Watershed landuse
- ✓ Nutrient loads
- Coupled biogeochemical cycles
- Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus

WBL

✓ Legacy nutrients – water quality

Dead Planet, Living Planet

"Ecosystems, from forests and freshwater to coral reefs and soils, deliver essential services to humankind estimated to be worth over US \$ 72 trillion a year – comparable to World Gross National Income. Yet in 2010, nearly two-thirds of the globe's ecosystems are considered degraded as a result of damage, mismanagement and a failure to invest and reinvest in their productivity, health and sustainability". Achim Steiner, UN Under-

Secretary General and UNEP Executive Director

C. Nelleman and E. Corcoran, 2010 United Nations Environment Programme (UNEP)

Global Population

L

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- ✓ Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

Land and Water – Natural Resources

- Are the landuse practices compatible with sustaining the quality of natural resources?
- Are the landuse practices adequate to meet current demands and future needs to sustain the quality of our natural resources?

Land and Water - Natural Resources

- Current practices are compatible (?) but are not adequate with sustaining the quality of natural resources
- The future of global sustainability depends on:
 - Meeting the food and fiber needs of a world population projected to exceed 10 billion by 2050
 - Protecting the quality of natural resources for future generations
- Sustainable development is needed for an optimized economic growth & natural resource protection.
- Challenge is to develop new practices that are efficient and compatible with current needs and future demands

Land-use transitions.

Jonathan A. Foley et al. Science 2005;309:570-574

Land Surface and Human Impact

Sanderson et al. 2002. BioScience 52(10):891-904

Global Landuse & Agriculture

R. Alkemade et al. 2009. Ecosystems 12:374-390

Urban Areas – One Million Inhabitants in 2006

WBL

Landuse and Natural Resources

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- ✓ Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

WBL

Fertilizers, Animal wastes Biosolids, Wastewaters Nutrient Transfer Uplands [sink/source] Wetlands & **Streams** [sink/source] Lake [sink] WBL

Fertilizers and Manures

- □ The World [Mullins et al., 2005]
 - □ Fertilizer use N/P ratio = 5.8
 - Manure production N/P ratio = 1.9
 - Collectable manure nutrients N/P ratio = 0.9

□ North America [Mullins et al., 2005]

- □ Fertilizer use N/P ratio = 6.2
- Manure production N/P ratio = 1.7
- Collectable manure nutrients N/P ratio = 0.8

Florida

□ Fertilizer use – N/P ratio = 6.8

WBL

Lands used for Production Agriculture

- Long-term application of fertilizer P has resulted in substantial accumulation of P in soils
- Land application of manures and other organic wastes
 - Nitrogen basis...results in excess P load
 - Phosphorus basis... increases land area requirements
- In many areas response to added fertilizer P appears to be poor

Nitrogen Export from Rivers

Reactive Nitrogen and Phosphorus Export from Rivers

S. P. Seitzinger et al, 2010. GBC 24: GB0A08, doi:10.1029/2009GB003587,

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- ✓ Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

WBL

Coupled Biogeochemical Cycles

For a watershed input and output and relationships between them are known.. BUT

- Internal processes are not well understood
- Often considered complex and difficult to measure
- Often considered not important by managers and policy makers

Coupled Biogeochemical Cycles

- ✓ Mutual dependency of one cycle over another (feedbacks and controls) or one organism over another (microbes, algae, and vegetation)
- ✓ Linkages between biogeochemical processes and biotic communities (vegetation, algae, and microbes)
- ✓ Cycles at different scales (molecular to landscape)
- ✓ Cumulative effects of these cycles on nutrient removal or retention

Spatial and Temporal Scales

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

WBL

Also a pollutant when too much reactive N is released to the environment

Non-reactive N: N₂ (78% of atmosphere)

Reactive N (Nr): All biologically, chemically, and radiatively active compounds (NH₃, NH₄⁺, NO_x, N₂O, NO₃⁻, organic N)

Nitrogen Cycle

Nitrogen Cycle

Seitzinger etal. 2006. Ecological Applications. 16:2064-2090

Denitrification

$$\checkmark NO_3 \stackrel{5 e^-}{\longrightarrow} N_2$$

- Dissimilatory nitrate reduction to ammonia (DNRA)
 - $\checkmark NO_3^- \xrightarrow{8 e^-} NH_4^+$
- Assimilatory nitrate reduction to ammonia
 - $\checkmark NO_3^- \longrightarrow NH_4^+ \longrightarrow Proteins$

Maquenne, 1882. Sur la reduction des nitrates dans la terre arable. Comptes rendus herbomadaires des seances de l'Acadenie des sciences. 95: 691-693

- ✓ In summary from my experience:
 - ✓ Nitrate is reduced under certain conditions in arable land releasing nitrogen gas
 - ✓ Nitrate reduction occurs in arable soil which contains a high organic matter
 - ✓ We have observed that this reduction occurs when the soil atmosphere is completely stripped of oxygen

Nitrate Reduction – Ammonium Oxidation

Denitrification Wall

Organic Carbon (electron donor)+NO_{3(electron acceptor)}→N₂ + CO₂

Seitzinger etal. 2006. Ecological Applications. 16:2064-2090

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- ✓ Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

Phosphorus: Also a pollutant when too much reactive P is released from

uplands into aquatic systems

Reactive P(RP): All biologically and chemically active compounds (dissolved inorganic P, dissolved organic P, particulate inorganic P, and particulate organic P)

Non-reactive P (NRP): Biologically not available and permanently buried in soils and sediments

Phosphorus in Soils

Phosphorus Cycle

Regulators of Inorganic Phosphorus Retention

- pH and Eh
- Phosphate concentration
- Clay content
- Iron and aluminum oxides
- Organic matter content
- Calcium carbonate content
- Time of reaction/aging
- Temperature

Phosphorus Retention Capacity Mineral Soils – Okeechobee Basin

Phosphorus Loads from Uplands

- Uplands have been a steady source of P to aquatic systems
- Best management practices and other remedial measures can significantly reduce P loads from uplands to aquatic systems
- How will aquatic systems respond to external P load reduction and legacy P?
- How long P memory lasts in aquatic systems before they reach stable condition?

Phosphorus Exchange between Sediment and Water Column

Outline

- ✓ Introduction
- ✓ Watershed landuse
- ✓ Nutrient loads
- ✓ Coupled biogeochemical cycles
- ✓ Biogeochemical processes Nitrogen
- ✓ Biogeochemical processes Phosphorus
- ✓ Legacy nutrients water quality

Legacy Nutrients

Nitrogen

- Nitrogen is tightly coupled carbon
- Nitrogen accumulates as a part of soil organic matter
- Nitrogen is lost as gaseous forms
- Inorganic nitrogen is small part of total N
- Ammonium N is unstable in uplands
- Nitrate is highly soluble and its mobility is linked travel time of water
- Nitrogen is effectively removed in anaerobic patches of watershed
- A small of applied fertilizer N accumulates in soils

Legacy Nutrients

Phosphorus

- Phosphorus is not tightly coupled carbon
- Only organic P accumulates as a part of soil organic matter
- Inorganic P is large proportion of soil total P
- A large proportion of P accumulates in soils, because inorganic P strongly bound to metals
- Depending on soil types, only small portion of P in soluble form and its mobility is linked travel time of water
- Transport of P is directly liked to sediment transport
- Phosphorus requirement of crops is low as compared to N

Legacy Phosphorus Memory

Time - Years

Legacy Phosphorus

Phosphorus Storage in Agricultural Lands

Bennett et al., 2001. BioScience, 51:227-234

Terrestrial Phosphorus Budget

Preindustrial estimate- Tg/year

1996 estimate- Tg/year

Bennett et al., 2001. BioScience, 51:227-234

Global Phosphorus Accumulation in Agricultural Soils

Lake Apopka 1989-96; 1997-2009

1,490 metric tons P in top 30 cm sediments

< 20 mt/year

SJRWMD

Phosphorus Forms

Surface Sediments: 0-10 cm

Reactive Phosphorus

- Inorganic P extracted with acid
- Organic P extracted with alkali

% of Total P

Non-reactive Phosphorus

Total P – Reactive P

Lake Apopka

Northern Everglades

Phosphorus Forms

Surface Soils: 0-10 cm

Reactive Phosphorus

- Inorganic P extracted with acid
- Organic P extracted with alkali

% of Total P

Non-reactive Phosphorus

Total P – Reactive P

WBL

56

Northern Everglades

Phosphorus Loads to Lake Okeechobee - 500 metric tons per year [1974-2014]

Northern Everglades Legacy Phosphorus

Lake Okeechobee

UF IFAS

H. Pearl et al., 2016. Environ. Sci. Technol. 50: 10805-10813. DOI: 10.1021/acs.est.6b02575

WBL

60

Northern Everglades – Nitrogen & Phosphorus Loads

Restoration Implications

- Watershed legacy nutrients can increase the lag time for recovery... can extend for several decades
- In-situ remediation technologies are needed to reduce nutrient loads
- Constructed wetlands and riparian buffers are effective in reducing nutrient loads, but they must managed for long-term sustainability
- Nitrogen and P reactivity and mobility is linked to other associated elements

Sustainable Watershed Nutrient Management

- Long-term goals of watershed management should include conservation and enhancement of soil, water, air quality
- Policies to reduce nutrient loads from watersheds should seek to improve soil quality as a first step to improve water quality
- Integrated holistic approach is needed to manage watershed nutrients

Sustainable Watershed Nutrient Management

- Develop of watershed nutrient management practices that are compatible with extreme climatic change events
- Estimate economic values of watershed ecosystem services and tradeoffs associated with changes in landuse and nutrient management practices
- Protecting soil quality, like protecting air and water quality, should be a fundamental goal of national environmental policy

"The nation that destroys its soil, destroys itself." - Franklin Delano Roosevelt

