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DEAD PLANET, LIVING PLANET

BIODIVERSITY AND ECOSYSTEM RESTORATION FOR SUSTAINABLE DEVELOPMENT
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Dead Planet, Living Planet

“Ecosystems, from forests and freshwater to
coral reefs and solls, deliver essential
services to humankind estimated to be worth
over US $ 72 trillion a year — comparable to
World Gross National Income. Yetin 2010,
nearly two-thirds of the globe’s ecosystems
are considered degraded as a result of
damage, mismanagement and a failure to
Invest and reinvest in their productivity,

health and sustainability”. Achim Steiner, UN Under-

Secretary General and UNEP Executive Director

C. Nelleman and E. Corcoran, 2010 United Nations Environment Programme (UNEP)
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Watershed landuse
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L and and Water — Natural Resources

 Are the landuse practices compatible with
sustaining the quality of natural resources?

 Are the landuse practices adequate to meet
current demands and future needs to sustain
the quality of our natural resources?
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Land and Water — Natural Resources

* Current practices are compatible (?) but are not adequate
with sustaining the quality of natural resources

* The future of global sustainability depends on:

* Meeting the food and fiber needs of a world population projected
to exceed 10 billion by 2050

* Protecting the quality of natural resources for future generations

« Sustainable development is needed for an optimized
economic growth & natural resource protection.

» Challenge is to develop new practices that are efficient
and compatible with current needs and future demands
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Land Surface and Human Impact

Index developed
integrates human
population density,
land transformation,
human access, and
electrical power
infrastructure. This
study suggests that
over 80% of the
land surface is
impacted by human
activity

B o-1 [ Jt-10 [ J10-20 [ J20-30 [ ]30-40 [l 40-60 [ co-s0 [ 80-100 [ | NoData
Sanderson etal. 2002. BioScience 52(10):891-904
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Billions
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Global Landuse &
Agriculture

Billions

Landuse and agriculture

Agricultural land

Extensive grasslands (incl pasturs)
Regrowth after use

Forests
Grasslands
Non-productive land
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Urban Areas — One Million
Inhabitants in 2006
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L anduse and Natural Resources

Agricultural/Forest

4 )

Practices
Natural Resources

-Wildlands
. . Water -Wetlands
Soil Quality Quality - -Streams/Rivers

\ -Lakes
-Estuaries
Urban \ /

Practices Ecosystem
Services
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Nutrient loads
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Fertilizers, Animal wastes
Biosolids, Wastewaters

Nutrient Transfer
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Fertilizers and Manures

aThe World [Mullins et al., 2005]
o Fertilizer use - N/P ratio = 5.8
a Manure production - N/P ratio = 1.9
a Collectable manure nutrients - N/P ratio = 0.9

aNorth America [Mullins et al., 2005]
a Fertilizer use - N/P ratio = 6.2
a Manure production - N/P ratio = 1.7
a Collectable manure nutrients - N/P ratio = 0.8

aFlorida
a Fertilizer use — N/P ratio = 6.8
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Lands used for
Production Agriculture

o Long-term application of fertilizer P has resulted
In substantial accumulation of P in soils

o Land application of manures and other organic
wastes
 Nitrogen basis...results in excess P load

e Phosphorus basis... increases land area
requirements

aln many areas response to added fertilizer P
appears to be poor
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Nitrogen Export from Rivers
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Reactive Nitrogen and Phosphorus
Export from Rivers

10 DIN export (N in Tg yr™) 1 DIP export (P in Tg yr™)
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UFIFAS S. P. Seitzinger et al, 2010. GBC 24: GBOA0S, doi:10.1029/2009GB003587,
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Coupled biogeochemical cycles
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CO u p I ed For a watershed input and

output and relationships

B|OgeOChem|CaI CyCIES between them are known.. BUT

(" Non-Mobile )
N =CaP

]

\ J

il

Mobile
P,C,N,and S

* Internal processes are not well understood

» Often considered complex and difficult to measure

» Often considered not important by managers and policy makers
UFIIEAS
(<} Wet
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Coupled Biogeochemical Cycles

v"Mutual dependency of one cycle over

another (feedbacks and controls) or
one organism over another (microbes,
algae, and vegetation)

v'Linkages between biogeochemical
processes and biotic communities
(vegetation, algae, and microbes)

v'Cycles at different scales (molecular to
landscape)

v'"Cumulative effects of these cycles on
nutrient removal or retention

UFIFAS
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Spatial and Temporal Scales

landscapes,
watersheds

>1,000 km
soil
aggregate
pedons,
clay particle, ‘ field plots
microbes
um
. NIM Atoms, molecules
e Length —

WBL
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Biogeochemical processes - Nitrogen
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Nitrogen:
Also a pollutant when too much
reactive N IS released to the
environment

Non-reactive N: N, (78% of atmosphere)

Reactive N (Nr): All biologically, chemically, and

radiatively active compounds (NH;, NH,*, NO, , N,0O,
NO,’, organic N)

WBL
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Nitrogen Cycle

Plant
Biomass

Microbial
( ) biomass

Soil organic N

WBL
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H4+/
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Nitrogen Cycle
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Nitrate Reduction

Space
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marine oxygen minimum
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Seitzinger etal.2006. Ecological Applications. 16:2064-2090
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Nitrate Reduction

v" Denitrification
v NO, == N,

v" Dissimilatory nitrate reduction to
ammonia (DNRA)

v NO, === NH,*
v Assimilatory nitrate reduction to
ammonia

v NOy == NH,"* == Proteins

WBL
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Nitrate Reduction

Maquenne - 1882. surlareduction des nitrates dans la

terre arable. Comptes rendus herbomadaires des seances de
I’Acadenie des sciences. 95: 691-693

v In summary from my experience:

v Nitrate is reduced under certain conditions in arable land
releasing nitrogen gas

v" Nitrate reduction occurs in arable soil which contains a high
organic matter

v We have observed that this reduction occurs when the soil
atmosphere is completely stripped of oxygen

UFIIFAS
@ WBL
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Nitrate Reduction — Ammonium Oxidation
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Denitrification Wall

Organic Carbon (electron donor)+NOS(eIectron acceptor)eNZ T COZ

Denitrification Wall

*

Groundwater Flow
Direction Soil +

Organic é
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Nitrate Reduction

N removed (%)
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Seitzinger etal.2006. Ecological Applications. 16:2064-2090
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Biogeochemical processes — Phosphorus
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Phosphorus:
Also a pollutant when too much
reactive P Is released from
uplands into aquatic systems

Reactive P(RP): All biologically and chemically active

compounds (dissolved inorganic P, dissolved organic P,
particulate inorganic P, and particulate organic P)

Non-reactive P (NRP): Biologically not available and

permanently buried in soils and sediments

WBL
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Phosphorus in Solls

Organic
Phosphorus phosphorus Uptake by
loading algae and

\ l / plants

Soil porewater
phosphorus
[dissolved]

Discrete ‘//' \ Metal oxides
phosphate and clay mineral
minerals 4—_’ surfaces

X
[ WBL
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Runoff,
Atmospheric
Deposition

Phosphorus Cycle
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Regulators of Inorganic
Phosphorus Retention

< pH and Eh

“* Phosphate concentration
< Clay content

< Iron and aluminum oxides
< Organic matter content

<+ Calcium carbonate content
< Time of reaction/aging

“» Temperature

UEAEAS
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Phosphorus Retention Capacity
Mineral Soils — Okeechobee Basin
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Phosphorus Loads from Uplands

o Uplands have been a steady source of P to aquatic
systems

o Best management practices and other remedial measures
can significantly reduce P loads from uplands to aquatic
systems

o How will aquatic systems respond to external P load
reduction and legacy P?

aHow long P memory lasts in aquatic systems before they
reach stable condition?

UF IFAS
D) s
i WBL



Phosphorus Exchange between
Sediment and Water Column

Internal Load
External

Load — Water

DIP, DOP =t PIP, POP

resuspension sedimentation

UF IFAS
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Legacy nutrients — water quality
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Legacy Nutrients

Nitrogen

» Nitrogen is tightly coupled carbon

* Nitrogen accumulates as a part of soil organic matter

* Nitrogen is lost as gaseous forms

e |norganic nitrogen is small part of total N

« Ammonium N is unstable in uplands

* Nitrate is highly soluble and its mobility is linked travel time of
water

* Nitrogen is effectively removed in anaerobic patches of
watershed

A small of applied fertilizer N accumulates in soils

WBL
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Legacy Nutrients

Phosphorus

Phosphorus is not tightly coupled carbon

Only organic P accumulates as a part of soil organic matter
Inorganic P is large proportion of soil total P

A large proportion of P accumulates in soils, because inorganic
P strongly bound to metals

Depending on soil types, only small portion of P in soluble form
and its mobility is linked travel time of water

Transport of P is directly liked to sediment transport
Phosphorus requirement of crops is low as compared to N

WBL



Legacy Phosphorus Memory

Memory

External Load

lReduction |
:
|
: Background

Internal : Level

:
|

1 1
1 1
|M
| Lag time for Recovery
1

Water Column Phosphorus
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Legacy Phosphorus

Watershed
> Input < Output
P flux A I Input > Output | o] p
Type ‘A’ : Type ‘B’ : Type ‘'C’
i i
1 |
1 1
1 1
1 1
1 1
I )
I
1 1
Input = | |
Output | i
| |
1 1
e = i
1 I >

Haygarth et al. 2014. Environ. Sci. Technol. 2014, 48, 8417-8419 Tlme
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Phosphorus Storage In
Agricultural Lands
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UEIFAS Bennett et al., 2001. BioScience, 51:227-234
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Terrestrial Phosphorus Budget

Preindustrial estimate- Tg/year 1996 estimate- Tg/year
1 1
Change-in-storage= | ——> 18.5 Change-in-storage =| ——>
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Bennett et al., 2001. BioScience, 51:227-234
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Global Phosphorus Accumulation in
Agricultural Solls
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Lake Apopka
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Phosphorus Forms

Surface Sediments: 0-10 cm

-

Reactive Phosphorus
 Inorganic P extracted with acid
e Organic P extracted with alkal

\_

~N

j

f

g

Non-reactive Phosphorus

Total P — Reactive P

~\

WBL

% of Total P

» 83%
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External Load - <20 mt P year!

Lake Apopka

[ Lake Apopka }

3 years 7 years

Internal Load

46 mt P year?
10% of 25% of
Reactive P Reactive P
124 mt P 309 mt P
Reactive P Non-reactive P
1,237 mtP 253 mt P
83% t I 17%

Sediments

Lake Apopka
1,490 mt P
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Phosphorus Forms

Surface Soils: 0-10 cm

- ~ % of Total P
Reactive Phosphorus

 Inorganic P extracted with acid

e Organic P extracted with alkal
\_ J

4 )
Non-reactive Phosphorus

e Total P — Reactive P
\_ Y,

R weL



Northern Everglades

Okeechobee Watershed
1400 -
00 1974-2014 Average
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Phosphorus Loads to Lake Okeechobee -
500 metric tons per year [1974-2014]
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Surface Soils 35%
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External Load - 500 mt P year!

[ Lake Okeechobee }
' 12 years ,—J\ 31 years

Lake Okeechobee

Internal Load
112 mt P year!

(|

1

10% of 25% of
Reactive P Reactive P
S 1,390 mt P 3,475 mt P

Reactive P ' Non-reactive P
13,900 mt P 7,490 mt P

65% t I 35%

I -t
! tht?jra| MUD zone sediments
IS\'/EIﬂSd Lake Okeechobee
IFA
UFIFAS B ok 21,390 mtP




External Inputs (watershed, groundwater, atmosphere)

N:P <9

Annual
Process Rates

N:P>23 |23 > N:P>9

Annual average phytoplankton nutrient limitstatus

N+P limited Strongly N-

growth

limited growth

P-limited
growth

N+P limited
growth

N- or N+P-
limited growth

AnnualNet N, Flux in/out of Reactive N Pool

Strongly P-
limited growth

8

N+P limited
> growth

=

N+P limited
growth

UF IFAS H. Pearl et al., 2016. Environ. Sci. Technol. 50; 10805-10813. DOI: 10.1021/acs.est.6b02575
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Northern Everglades — Nitrogen & Phosphorus Loads
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Restoration Implications

<« Watershed legacy nutrients can increase the lag
time for recovery... can extend for several decades
< In-situ remediation technologies are needed to
reduce nutrient loads

<« Constructed wetlands and riparian buffers are
effective in reducing nutrient loads, but they must
managed for long-term sustainability

< Nitrogen and P reactivity and mobility is linked to
other associated elements

UF/IFAS
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Sustainable Watershed
Nutrient Management

o Long-term goals of watershed management
should include conservation and enhancement of

soll, water, air quality
o Policies to reduce nutrient loads from watersheds

should seek to improve soil quality as a first step
to iImprove water quality

o Integrated holistic approach is needed to manage
watershed nutrients

UF/IFAS
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Sustainable Watershed
Nutrient Management

o Develop of watershed nutrient management practices
that are compatible with extreme climatic change events

o Estimate economic values of watershed ecosystem
services and tradeoffs associated with changes in
landuse and nutrient management practices

o Protecting soll quality, like protecting air and water
guality, should be a fundamental goal of national
environmental policy

“The nation that destroys its soil, destroys itself. ” - Franklin Delano Roosevelt

UF|IFAS
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