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C. Nelleman and E. Corcoran, 2010 United Nations Environment Programme (UNEP)
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“Ecosystems, from forests and freshwater to 
coral reefs and soils, deliver essential 
services to humankind estimated to be worth 
over US $ 72 trillion a year – comparable to 
World Gross National Income.   Yet in 2010, 
nearly two-thirds of the globe’s ecosystems 
are considered degraded as a result of 
damage, mismanagement and a failure to 
invest and reinvest in their productivity, 
health and sustainability”.   Achim Steiner,  UN Under-

Secretary General and UNEP Executive Director

C. Nelleman and E. Corcoran, 2010 United Nations Environment Programme (UNEP)

Dead Planet, Living Planet
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Land and Water – Natural Resources

• Are the landuse practices compatible with 
sustaining the quality of natural resources?

• Are the landuse practices adequate to meet 
current demands and future needs to sustain 
the quality of our natural resources?
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• Current  practices are compatible (?) but are not adequate 
with sustaining the quality of natural resources

• The future of global sustainability depends on:
• Meeting the food and fiber needs of a world population projected 

to exceed 10 billion by 2050
• Protecting the quality of natural resources for future generations

• Sustainable development is needed for an optimized 
economic growth & natural resource protection.

• Challenge is to develop new practices that are efficient 
and compatible with current needs and future demands

Land and Water – Natural Resources
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Land -use transitions. 

Jonathan A. Foley et al. Science 2005;309:570-574
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Sanderson etal. 2002. BioScience 52(10):891-904

Land Surface and Human Impact

Index developed 
integrates human 
population density, 
land transformation, 
human access, and 
electrical power 
infrastructure. This 
study suggests that 
over 80% of the
land surface is 
impacted by human 
activity
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R. Alkemade et al. 2009.
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http://en.wikipedia.org/wiki/World_population

Urban Areas – One Million 
Inhabitants in 2006
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Watershed Hydrologic 
Connectivity
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USEPA



Landuse and Natural Resources
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Wetlands & 
Streams

[sink/source]

Lake
Okeechobee

Lake 
[sink]

Uplands
[sink/source]

Fertilizers, Animal wastes
Biosolids, Wastewaters

Nutrient Transfer
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Fertilizers and Manures
�The World

� Fertilizer use - N/P ratio = 5.8
� Manure production - N/P ratio = 1.9
� Collectable manure nutrients - N/P ratio = 0.9

�North America
� Fertilizer use - N/P ratio = 6.2 
� Manure production - N/P ratio = 1.7
� Collectable manure nutrients - N/P ratio = 0.8

�Florida
� Fertilizer use – N/P ratio = 6.8

[Mullins et al., 2005]

[Mullins et al., 2005]
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Lands used for 
Production Agriculture

� Long-term application of fertilizer P has resulted 
in substantial accumulation of P in soils

� Land application of manures and other organic 
wastes 

• Nitrogen basis…results in excess P load
• Phosphorus basis… increases land area 

requirements

� In many areas response to added fertilizer P 
appears to be poor
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Boyer et al., 2006

Nitrogen Export from Rivers

19



S. P. Seitzinger et al, 2010. GBC 24: GB0A08, doi:10.1029/2009GB003587, 
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Reactive Nitrogen and Phosphorus 

Export from Rivers
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WBL

For a watershed input and 
output and relationships 
between them are known.. BUT

• Internal processes are not well understood 
• Often considered complex and difficult to measure
• Often considered not important by managers and policy makers
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Coupled Biogeochemical Cycles

�Mutual dependency of one cycle over 
another (feedbacks and controls) or 
one organism over another (microbes, 
algae, and vegetation)

�Linkages between biogeochemical 
processes and biotic communities 
(vegetation, algae, and microbes)

�Cycles at different scales (molecular to 
landscape)

�Cumulative effects of these cycles on 
nutrient removal or retention

C N

S

P
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Nitrogen:
Also a pollutant when too much 

reactive N is released to the 
environment

Non-reactive N: N2 (78% of atmosphere)

Reactive N (Nr): All biologically, chemically, and 
radiatively active compounds (NH3 , NH4

+, NOx , N2O, 
NO3

-, organic N)

26
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Nitrogen Cycle
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Seitzinger etal.2006. Ecological Applications. 16:2064-2090

Nitrate Reduction

WBL



� Denitrification  
� NO3 N2

� Dissimilatory nitrate reduction to      
ammonia (DNRA)

� NO3
- NH4

+

� Assimilatory nitrate reduction to 
ammonia

� NO3
- NH4

+                        Proteins

Nitrate Reduction

5 e-

8 e-
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Maquenne , 1882.  Sur la reduction des nitrates dans la 
terre arable.  Comptes rendus herbomadaires des seances de 
l’Acadenie des sciences. 95: 691-693

� In summary from my experience:
� Nitrate is reduced under certain conditions in arable land 

releasing nitrogen gas
� Nitrate reduction occurs in arable soil which contains a high 

organic matter
� We have observed that this reduction occurs when the soil 

atmosphere is completely stripped of oxygen

WBL 31

Nitrate Reduction
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Nitrate Reduction – Ammonium Oxidation 

NO2



Denitrification Wall

Schmidt and Clark, 2010
WBL 33

Organic Carbon (electron donor)+NO3(electron acceptor)�N2 + CO2

Soil +
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Seitzinger etal.2006. Ecological Applications. 16:2064-2090

Nitrate Reduction
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Phosphorus:
Also a pollutant when too much 

reactive P is released from 
uplands into aquatic systems 

Reactive P(RP): All biologically  and chemically active 
compounds (dissolved inorganic P, dissolved organic P, 
particulate inorganic P, and particulate organic P)

Non-reactive P (NRP): Biologically not available and 
permanently buried in soils and sediments
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Phosphorus in Soils 

Soil porewater
phosphorus
[dissolved]

Organic
phosphorusPhosphorus

loading 
Uptake by
algae and 

plants

Metal oxides
and clay mineral

surfaces

Discrete
phosphate 

minerals
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Regulators of Inorganic 
Phosphorus Retention

� pH and Eh
� Phosphate concentration
� Clay content
� Iron and aluminum oxides
� Organic matter content
� Calcium carbonate content
� Time of reaction/aging
� Temperature
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Phosphorus Retention Capacity
Mineral Soils – Okeechobee Basin
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Phosphorus Loads from Uplands

� Uplands have been a steady source of P to aquatic 
systems

� Best management practices and other remedial measures 
can significantly reduce P loads from uplands to aquatic 
systems

� How will aquatic systems respond to external P load 
reduction and legacy P?

� How long P memory lasts in aquatic systems before they 
reach stable condition?

WBL 41
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Phosphorus Exchange between 
Sediment and Water Column
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Legacy Nutrients

Nitrogen
• Nitrogen is tightly coupled carbon
• Nitrogen accumulates as a  part of soil organic matter
• Nitrogen is lost as gaseous forms
• Inorganic nitrogen is small part of total N
• Ammonium N is unstable in uplands
• Nitrate is highly soluble and its mobility is linked travel time of 

water
• Nitrogen is effectively removed in anaerobic patches of 

watershed
• A small of applied fertilizer N accumulates in soils

WBL
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Legacy Nutrients

Phosphorus
• Phosphorus is not tightly coupled carbon
• Only organic P accumulates as a  part of soil organic matter
• Inorganic P is large proportion of soil total P
• A large proportion of P accumulates in soils, because inorganic 

P strongly bound to metals
• Depending on soil types, only small portion of P in soluble form 

and its mobility is linked travel time of water
• Transport of P is directly liked to sediment transport
• Phosphorus requirement of crops is low as compared to N

WBL
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Watershed

P flux

Time

Input > Output Input < Output

Input = 

Output

Legacy Phosphorus 

Haygarth et al. 2014. Environ. Sci. Technol. 2014, 48, 8417−8419
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Bennett et al., 2001. BioScience, 51:227-234  
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Phosphorus Storage in 
Agricultural Lands
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Bennett et al., 2001. BioScience, 51:227-234  

Terrestrial Phosphorus Budget
Preindustrial estimate- Tg/year 1996 estimate- Tg/year
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Global Phosphorus  Accumulation in 
Agricultural Soils 

1958–1998, [Tg per year]

Bennett et al., 2001. BioScience, 51:227-234  
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Lake Apopka 
1989-96; 1997-2009

SJRWMD

63 mt/ year

P

< 20 mt/year

1,490 metric tons P
in top 30 cm 
sediments
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Phosphorus Forms
Surface Sediments:  0-10 cm

Reactive Phosphorus
• Inorganic P extracted with acid
• Organic P extracted with alkali

% of Total P

83%

17%

WBL 52

Non-reactive Phosphorus
• Total P – Reactive P



Lake Apopka

External Load - <20 mt P year-1

Internal Load

46 mt P year-1

Sediments

Lake Apopka

1,490 mt P

Non-reactive P

253 mt P 
Reactive P

1,237 mt P 

10%  of 

Reactive P

124 mt P 

25% of

Reactive P

309 mt P 

3 years 7 years

83% 17%

Lake Apopka 
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Northern 
Everglades 

Southern 
Everglades 

WBL
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Northern 
Everglades 

?

WBL
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Phosphorus Forms
Surface Soils:  0-10 cm
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Reactive Phosphorus
• Inorganic P extracted with acid
• Organic P extracted with alkali

% of Total P

65%

35%Non-reactive Phosphorus
• Total P – Reactive P
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LOB 

Surface Soils

170,000 mt P 

Non-reactive P

59,440 mt P 
Reactive P

110,500 mt P 

10%  of 

Reactive P

11,000 mt P 

25% of

Reactive P

28,000 mt P 

P release

500 mt P year-1

22 years 56 years

65%

35%

Lake Okeechobee

Northern 
Everglades

Legacy Phosphorus
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Lake Okeechobee

External Load - 500 mt P year-1

Internal Load

112 mt P year-1

MUD zone sediments

Lake Okeechobee

21,390 mt P

Non-reactive P

7,490 mt P 
Reactive P

13,900 mt P 

10%  of 

Reactive P

1,390 mt P 

25% of

Reactive P

3,475 mt P 

12 years 31 years

65% 35%

Peat
Littoral

Sand
Mud
Rock

Lake Okeechobee 
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H. Pearl et al., 2016. Environ. Sci. Technol. 50: 10805-10813. DOI: 10.1021/acs.est.6b02575

60WBL



61

0

2000

4000

6000

8000

10000

1995 2000 2005 2010 2015 2020

0

200

400

600

800

1000

1200

1995 2000 2005 2010 2015 2020

N
 l

o
a

d
 –

m
t/

y
e

a
r

P
 l

o
a

d
 –

m
t/

y
e

a
r

0

5

10

15

20

25

30

1995 2000 2005 2010 2015 2020

M
a

ss
 N

/P
  

R
a

ti
o

Northern Everglades – Nitrogen & Phosphorus Loads

23

9
N-limitation

P-limitation

N+P limitation

WBL



Restoration Implications

� Watershed legacy nutrients can increase the lag 
time for recovery… can extend for several decades
� In-situ remediation technologies are needed to 
reduce nutrient loads
� Constructed wetlands and riparian buffers are 
effective in reducing nutrient loads, but they must 
managed for long-term sustainability
� Nitrogen and P reactivity and mobility is linked to 
other associated elements
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� Long-term goals of watershed management 
should include conservation and enhancement of  
soil, water, air quality

� Policies to reduce nutrient loads from watersheds 
should seek to improve soil quality as a first step 
to improve water quality

� Integrated holistic approach is needed to manage 
watershed nutrients 

WBL 63

Sustainable Watershed
Nutrient Management 



�Develop of watershed nutrient management practices 
that are compatible with extreme climatic change events

�Estimate  economic values of watershed ecosystem 
services and tradeoffs associated with changes in 
landuse and nutrient management practices

�Protecting soil quality, like protecting air and water 
quality, should be a fundamental goal of national 
environmental policy

Sustainable Watershed
Nutrient Management 
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“The nation that destroys its soil, destroys itself. ” - Franklin Delano Roosevelt 



http://soils.ifas.ufl.edu

E-mail: krr@ufl.edu  
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